Trends and Opportunities in Large Language Models of Source Code

Why We're Here

GitHub Copilot (June 2021)

- Closed-source
- Limited details

	package main
	<pre>type CategorySummary struct {</pre>
5	
6	
8	
	<pre>func createTables(db *sql.DB) {</pre>
10	
11	
12	
	<pre>func createCategorySummaries(db *sql.D</pre>
14	
15	
16	
17 18	
18	
20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	

Outline

Intro to (Foundation) Language Models

State of the Field Trends, findings, questions

Opportunities

Challenges

Language Modeling

Recurrent Neural Networks (RNNs) capture this naturally

Language Modeling

RNNs condense all history into a single state ... which is provably problematic

(b)

Attention: Learn to Ask

https://distill.pub/2016/augmented-rnns/ https://medium.com/hackernoon/attention-mechanism-in-neural-network-30aaf5e39512

Transformers

Do we still need RNNs?

- Attention is powerful & highly parallelizable
- Using just attention is possible, but takes quite a few ingredients.

Transformers

Allow for unprecedented *scaling*

• A key property of foundation models

Transformers asymptotically outperform LSTMs due to improved use of long contexts

Scaling Laws for Neural Language Models. Kaplan et al., 2020. https://arxiv.org/pdf/2001.08361.pdf

Transformers Are Good Foundation Models

1. Strong, consistent scaling with compute

Scaling Laws for Neural Language Models. Kaplan *et al.*, 2020. <u>https://arxiv.org/pdf/2001.08361.pdf</u>

Transformers Are Good Foundation Models

- 1. Strong, consistent scaling with compute
- 2. Powerful initialization from (generic) pretraining

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Transformers Are Good Foundation Models

- 1. Strong, consistent scaling with compute
- 2. Powerful initialization from (generic) pretraining
- 3. Emergent capabilities at large scale

GPT-3 (Brown et al., 2020), <u>https://arxiv.org/pdf/2005.14165.pdf</u>

Software: We Scale Too

Note: orange is closed-source

Outline

Intro to (Foundation) Language Models

State of the Field Trends, findings, questions

Opportunities

Challenges

Models: a Bird's Eye View

Trained entirely on Code:

- CodeParrot (Misc., 2021)
- PolyCoder (CMU, 2022)
- InCoder (FAIR, 2022)

Trained mostly on NL:

I'll discuss best-practice based on all of these

- GPT-Neo/J/NeoX (Misc + EleutherAl, 2021/2)
- PALM (Google, 2022)
- Austin et al. (Google, 2021)

A bit of both:

- Codex (2021, OpenAI)
- CodeGen (2022, Salesforce)

What Makes a Good LLM for Code?

1. Data

- Volume
- Preprocessing
- 2. Model Size
 - Parameters
- 3. Initialization
 - NL pretraining

4. Training

- Code tokens seen
- Language effects
- Batch size & misc.

Pass Rate vs Model Size

Codex

The first many-billion parameter LM for code

- Initialized from GPT-3
- Fine-tuned on 159GB of Python
 - Introduced HumanEval: a benchmark of NL → Python Code problems with tests

Some Findings:

- Strong, log-linear scaling after \sim 50M params
- Prompting matters, even non-functional aspects

Model Performance With and Without Subtle Bugs in Context

https://arxiv.org/pdf/2107.03374.pdf

CodeParrot

The first OSS entry

- 1.5B parameters
- 26B Python tokens from BigQuery

Some Findings:

- Ca. 70% duplication deduplication is key
- Code files can be very long
 - Segment into windows of 1,024
 - This is common in NL training too

https://huggingface.co/blog/codeparrot

PolyCoder

Our entry from CMU

- 2.7B parameters
- Trained on 12 languages

- Edge of single-node/"lab-machine" scale training
 - Ca. 45 days on 8 * RTX 8000 48GB
- Further insights into sampling *temperature*

• The good news: PolyCoder outperforms Codex on C

* Since the exact training set of Codex is unknown, it may include files from these test sets rendering Codex's results overly-optimistic.

https://arxiv.org/pdf/2202.13169.pdf – NOTE: CodeParrot Python score is likely incorrect, should be ca. 2.9

- The good news: PolyCoder outperforms Codex on C
- The bad news: most LMs, even some trained on less code, are better on others

https://arxiv.org/pdf/2202.13169.pdf – NOTE: CodeParrot Python score is likely incorrect, should be ca. 2.9

Goal: understand what makes Codex work

• It seems *unreasonably* effective

Goal: understand what makes Codex work

- It seems *unreasonably* effective
- What gives? It does more data preprocessing, but CodeParrot does the same

	PolyCoder	CodeParrot	Codex	
Dedup	Exact	Exact	Unclear, mentions "unique"	
Filtering	Files > 1 MB, < 100 to- kens	Files > 1MB, max line length > 1000, mean line length > 100, fraction of alphanumeric charac- ters < 0.25, containing the word "auto-generated" or similar in the first 5 lines	Files > 1MB, max line length > 1000, mean line length > 100, auto-generated (details unclear), contained small percentage of al- phanumeric characters (details unclear)	
Tokenization	Trained GPT-2 tok- enizer on a random 5% subset (all languages)	Trained GPT-2 tokenizer on train split	GPT-3 tokenizer, add multi- whitespace tokens to reduce re- dundant whitespace tokens	

Goal: understand what makes Codex work

- It seems *unreasonably* effective
- What then? Candidate explanations:

	PolyCoder (2.7B)	CodeParrot (1.5B)	Codex (12B)	
Model Initialization NL Knowledge	From scratch Learned from com- ments in the code	From scratch Learned from com- ments in the code	Initialized from GPT-3 Natural language knowl- edge from GPT-3	Initialization
Learning Rate	1.6e-4	2.0e-4	1e-4	_
Optimizer	AdamW	AdamW	AdamW	
Adam betas	0.9, 0.999	0.9, 0.999	0.9, 0.95	
Adam eps	1e-8	1e-8	1e-8	
Weight Decay	-	0.1	0.1	
Warmup Steps	1600	750	175	
Learning Rate Decay	Cosine	Cosine	Cosine	
Batch Size (#tokens)	262K	524K	2M	Training
Training Steps	150K steps, 39B tokens	50K steps, 26B tokens	100B tokens	
Context Window	2048	1024	4096	

Batch Size

- Large batches yield lower loss
 - 2M+ tokens per batch is now common
- But, greatly increases GPU needs
 - At 2.7B params, a 48GB GPU can fit ca. 2¹⁵ tokens
 - We can simulate larger batches with "gradient accumulation", but that is very slow

https://arxiv.org/pdf/2001.08361.pdf

Pre-Training: Let's Talk GPT-x

- Various open source LLMs exist
 - Mainly of interest: GPT-J, GPT-Neo, GPT-NeoX
 - Trained with/by EleutherAI
 - Up to 20B parameters (NeoX)
- Trained on The Pile
 - Large web-crawl including GitHub (ca. 10%) & StackOverflow
 - "Third" option, besides code-only or NL first, then Code

https://arxiv.org/pdf/2101.00027.pdf

• Trained far longer, but on similar #code tokens

Model	Pass@1	Pass@10	Pass@100	Tokens Trained	Code Tokens	Python Tokens
PolyCoder (160M)	2.13%	3.35%	4.88%	39B	39B	2.5B
PolyCoder (400M)	2.96%	5.29%	11.59%	39B	39B	2.5B
PolyCoder (2.7B)	5.59%	9.84%	17.68%	39B	39B	2.5B
CodeParrot (110M)	3.80%	6.57%	12.78%	26B	26B	26B
CodeParrot (1.5B)	3.58%	8.03%	14.96%	26B	26B	26B
GPT-Neo (125M)	0.75%	1.88%	2.97%	300B	22.8B	3.1B
GPT-Neo (1.3B)	4.79%	7.47%	16.30%	380B	28.8B	3.9B
GPT-Neo (2.7B)	6.41%	11.27%	21.37%	420B	31.9B	4.3B
GPT-J (6B)	11.62%	15.74%	27.74%	402B	30.5B	4.1B
Codex (300M)	13.17%	20.37%	36.27%	100B*	100B*	100B*
Codex (2.5B)	21.36%	35.42%	59.50%	100B*	100B*	100B*
Codex (12B)	28.81%	46.81%	72.31%	100B*	100B*	100B*

- Trained far longer, but on similar #code tokens
- Around 100M parameters, CodeParrot is decidedly better, followed by PolyCoder

Model	Pass@1	Pass@10	Pass@100	Tokens Trained	Code Tokens	Python Tokens
PolyCoder (160M)	2.13%	3.35%	4.88%	39B	39B	2.5B
PolyCoder (400M) PolyCoder (2.7B)	2.96% 5.59%	5.29% 9.84%	11.59% 17.68%	39B 39B	39B 39B	2.5B 2.5B
CodeParrot (110M)	3.80%	6.57%	12.78%	26B	26B	26B
CodeParrot (1.5B)	3.58%	8.03%	14.96%	26B	26B	26B
GPT-Neo (125M)	0.75%	1.88%	2.97%	300B	22.8B	3.1B
GP1-Neo (1.3B) GPT-Neo (2.7B) GPT-J (6B)	4.79% 6.41% 11.62%	1.47% 11.27% 15.74%	16.30% 21.37% 27.74%	380B 420B 402B	28.8B 31.9B 30.5B	3.9B 4.3B 4.1B
Codex (300M) Codex (2.5B) Codex (12B)	13.17% 21.36% 28.81%	20.37% 35.42% 46.81%	36.27% 59.50% 72.31%	100B* 100B* 100B*	100B* 100B* 100B*	100B* 100B* 100B*

- Trained far longer, but on similar #code tokens
- But in 1-3B range, Neo is *clearly better*

Model	Pass@1	Pass@10	Pass@100	Tokens Trained	Code Tokens	Python Tokens
PolyCoder (160M) PolyCoder (400M)	2.13% 2.96%	3.35% 5.29%	4.88% 11.59%	39B 39B	39B 39B	2.5B 2.5B
PolyCoder (2.7B)	5.59%	9.84%	17.68%	39B	39B	2.5B
CodeParrot (110M)	3.80%	6.57%	12.78%	26B	26B	26B
CodeParrot (1.5B)	3.58%	8.03%	14.96%	26B	26B	26B
GPT-Neo (125M)	0.75%	1.88%	2.97%	300B	22.8B	3.1B
GPT-Neo (1.3B) GPT-Neo (2.7B)	4.79% 6.41%	7.47% 11.27%	16.30% 21.37%	380B 420B	28.8B 31.9B	3.9B 4.3B
GPT-J (6B)	11.62%	15.74%	27.74%	402B	30.5B	4.1B
Codex (300M) Codex (2.5B) Codex (12B)	13.17% 21.36% 28.81%	20.37% 35.42% 46.81%	36.27% 59.50% 72.31%	100B* 100B* 100B*	100B* 100B* 100B*	100B* 100B* 100B*

https://arxiv.org/pdf/2202.13169.pdf – NeoX 20B is even better, has been benchmarked here https://arxiv.org/pdf/2204.05999.pdf

- Trained far longer, but on similar #code tokens
- But in 1-3B range, Neo is *clearly better*
- CodeParrot saw the most Python tokens evidently important at small scale
 - But at 1B+ parameter scale, total training data volume matters, a lot
 - Neo saw 10-15x as many tokens
- CodeParrot & PolyCoder are <u>seriously underfitting</u> for their size
 - We trained 2.7B parameters with \sim 40B tokens (seen); 400B would have been better
 - Unrealistic on a single node
 - What is the best pretraining/initialization signal?

- A 3-tier training regime
- 1. Initialize on The Pile
- 2. Calibrate on 6 languages from BigQuery GitHub
- 3. Fine-tune on Python-only

Key observations:

- NL Scaling is decent, but capped
 - Helpful temperature observations

Key observations:

- NL Scaling is decent, but capped
 - Helpful temperature observations
- Multi-lingual training helps modestly
 - (note change in y-range)

Key observations:

- NL Scaling is decent, but capped
 - Helpful temperature observations
- Multi-lingual training helps modestly
 - (note change in y-range)
- Monolingual fine-tuning is crucial
 - First to match Codex
- Is "Multi" before "Mono" necessary?
 - Unclear, Codex suggests not

https://arxiv.org/pdf/2203.13474.pdf

How to Match Codex

• Data

- Several 100B tokens required
 - Rarely available for a single programming language; NL initialization works well
- Language-specific fine-tuning (50GB or more) is key
- Model
 - Performance increases log-linearly with parameters
 - 2B to 6B parameters is a sweet-spot (for now)
 - Low memory footprint enables large batch sizes; performance just 10%-25% shy of Codex
 - Fairly good latency, but needs work
- Resources (for 2.7B parameters)
 - Memory: 2.5TB+ of RAM, for 2M tokens per batch without gradient accumulation
 - **Compute:** ca. 200 PetaFLOP/s Days \approx 3 weeks on 64 A100s (at 45% throughput)
 - Both scale linearly with model size; 12B parameters needs 4-5x as much

Open Research Questions

- Fundamentally: Better Scaling Laws for Code
 - Chinchilla suggests smaller models, more data
 - If same for code, PolyCoder was near-optimal*
 - The trick is finding that much mono-lingual data
- Context window: 4,096 vs. 2,048
 - AFAIK, only Codex uses the former
 - Code files are large it should help
 - But, 4K is expensive, all-but necessitates sparse/dense attention
- Tokenization: PolyCoder vocabulary is code-specific, Codex & others aren't
 - Codex's vocab seems to be GPT-3 + sequences of 1 24 spaces.
 - Does it matter? This work suggests some code-specific tokenization might help: <u>https://openreview.net/pdf?id=rd-G1nO-Jbq</u>
 - But note: no results on LLMs.

https://arxiv.org/pdf/2203.15556.pdf -- We used 1.4e²¹ FLOPs; Chinchilla suggests using that budget to train ~3-4B parameters and ~75B tokens

Outline

Intro to (Foundation) Language Models

State of the Field Trends, findings, questions

What's Next?

- Breaking free from left-to-right
 - FAIR's InCoder, Codex edit mode
 - Iteratively refining generations
- New Scaling Frontiers
 - Google's PaLM
- New Tasks
 - Repair, type prediction, translation

InCoder

- Causal Masking
 - I.e., decoder-only
 - Drop 1+ random spans
 - Infill using placeholders
- Train on Python + S.O.
- Up to 6.7B params

Training

Original Document

Masked Document

InCoder

- Causal Masking
 - I.e., decoder-only
 - Drop 1+ random spans
 - Infill using placeholders
- Train on Python + S.O.
- Up to 6.7B params

Enables tons of tasks

- Variable naming
- Type inference
- Completion
- Repair

Training

Original Document

Masked Document

Zero-shot Inference

Type Inference

Variable Name Prediction

InCoder

- Based on Causal Masking
 - Powerful idea! Suffix context is very helpful
 - Probably worth exploring masking strategies beyond Poisson-random on tokens

https://arxiv.org/pdf/2204.05999.pdf

Codex can do this too

- Not many details
 - Can train like this with encoder/decoder setup (see also (Code)T5)

```
def get_files(path: str, size: int):
def prune(dirp, files):
    for file in files:
        file = os.path.join(dirp, file)
        if os.path.getsize(file) > size:
            yield file
    for (dirp, _, files) in os.walk(path):
        yield from prune(dirp, files)
```


https://openai.com/blog/gpt-3-edit-insert/ - https://arxiv.org/pdf/2005.05339.pdf

Iterating (CodeGen, Austin et al.)

- Who gets everything right the first time?
 - Iteration is surprisingly feasible!
 - Never explicitly trained for, just concatenate history
 - Is that good/bad? Who knows!

		0 / 256	in d
	*		

https://arxiv.org/pdf/2203.13474.pdf - https://arxiv.org/pdf/2108.07732.pdf

PaLM(-Coder) – 535B parameters

Data: 780B <u>tokens</u> Google internal web crawl **Code:** 39B tokens from 24 languages, 39B tokens

- Mostly Java, HTML, JS
- Followed by odd fine-tuning regime, mostly Python

Some Findings:

- Even plain PaLM matchers/outperforms Codex 12B
 - Despite training on just 2.7B Python tokens
 - Hard to account for model scale, of course need new laws
- Also good at: repair, translation
- Large models are very likely to memorize code

Outline

Intro to (Foundation) Language Models

State of the Field Trends, findings, questions Opportunities

Challenges

The Cost of Scaling

Academia is priced out

@Skiminok

Alex Polozov

Tbh personally, I find it sad that the know-how of training LMs is spread across multiple competing organizations, hundreds of researchers' & research engineers' brains, and rarely systematically analyzed and compared, let alone written.

11:59 AM · Apr 7, 2022 · Twitter for Android

Leads to fragmented knowledge

https://twitter.com/Skiminok/status/1512097828373377026 - and just to be clear, I think very highly of Alex

Forgetting Natural Language

Fine-tuning *solely* on code is powerful

- See PALM, CodeGen, Codex
- But, models tend to forget their NL training days
 - That's not ideal for communicating with humans

CODEGEN-MULTI 6.1B

Number of Samples (k)

 10^{2}

Reliability

- LLMs don't know to generate semantically correct code
 - We just hope they do based on seeing enough data spoilers: they don't
 - In fact, poor prompts make them more likely to generate vulnerable code
 - Not just a matter of data volume: models associate prompts with good/bad examples seen
- That creates opportunities for prompt engineering
 - E.g., <u>Jigsaw</u>, page 26 of <u>PALM</u>
 - ... which seems awfully palliative to me
- What is the alternative?
 - Not sure! Tests are nice, but rarely available should models write those too?
 - Bringing static analysis in the loop may help
 - Nothing definitive yet

Thanks to my CMU collaborators: Frank Xu, Uri Alon, Graham Neubig!