
Trends and Opportunities in Large
Language Models of Source Code

Vincent J. Hellendoorn
Carnegie Mellon University

May 3rd, 2022

Why We’re Here

GitHub Copilot (June 2021)

• Closed-source

• Limited details

https://copilot.github.com/

Outline

Intro to (Foundation)
Language Models

State of the Field
Trends, findings,
questions

Opportunities Challenges

Language Modeling

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Language is largely “left-to-right”

Recurrent Neural Networks (RNNs) capture this naturally

I am going to the ___

movies
grocery store
meeting

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Language Modeling

RNNs condense all history into a single state

… which is provably problematic

https://colah.github.io/posts/2015-01-Visualizing-Representations/ – Learning long-term dependencies with gradient descent is difficult, Bengio, Simard & Frasconi, TNN 1994

https://colah.github.io/posts/2015-01-Visualizing-Representations/

Attention: Learn to Ask

https://distill.pub/2016/augmented-rnns/
https://medium.com/hackernoon/attention-mechanism-in-neural-network-30aaf5e39512

https://distill.pub/2016/augmented-rnns/
https://medium.com/hackernoon/attention-mechanism-in-neural-network-30aaf5e39512

Transformers

Attention is All You Need. Vaswani et al., 2017

Do we still need RNNs?

• Attention is powerful & highly parallelizable

• Using just attention is possible, but takes
quite a few ingredients.

Transformers

Allow for unprecedented scaling

• A key property of foundation models

Scaling Laws for Neural Language Models. Kaplan et al., 2020. https://arxiv.org/pdf/2001.08361.pdf

https://arxiv.org/pdf/2001.08361.pdf

Transformers Are Good Foundation Models

1. Strong, consistent scaling with compute

Scaling Laws for Neural Language Models. Kaplan et al., 2020. https://arxiv.org/pdf/2001.08361.pdf

https://arxiv.org/pdf/2001.08361.pdf

Transformers Are Good Foundation Models

1. Strong, consistent scaling with compute

2. Powerful initialization from (generic) pretraining

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Transformers Are Good Foundation Models

1. Strong, consistent scaling with compute

2. Powerful initialization from (generic) pretraining

3. Emergent capabilities at large scale

GPT-3 (Brown et al., 2020), https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Software: We Scale Too

Note: orange is closed-source

https://arxiv.org/pdf/2202.13169.pdf

https://arxiv.org/pdf/2202.13169.pdf

Outline

Intro to (Foundation)
Language Models

State of the Field
Trends, findings,
questions

Opportunities Challenges

Models: a Bird’s Eye View

Trained entirely on Code:

• CodeParrot (Misc., 2021)

• PolyCoder (CMU, 2022)

• InCoder (FAIR, 2022)

Trained mostly on NL:

• GPT-Neo/J/NeoX (Misc + EleutherAI, 2021/2)

• PALM (Google, 2022)

• Austin et al. (Google, 2021)

A bit of both:

• Codex (2021, OpenAI)

• CodeGen (2022, Salesforce)

I’ll discuss best-practice
based on all of these

What Makes a Good LLM for Code?

1. Data
• Volume

• Preprocessing

2. Model Size
• Parameters

3. Initialization
• NL pretraining

4. Training
• Code tokens seen

• Language effects

• Batch size & misc.

Codex

https://arxiv.org/pdf/2107.03374.pdf

The first many-billion parameter LM for code

• Initialized from GPT-3

• Fine-tuned on 159GB of Python
• Introduced HumanEval: a benchmark of

NL → Python Code problems with tests

Some Findings:

• Strong, log-linear scaling after ~ 50M params

• Prompting matters, even non-functional aspects

CodeParrot 🦜

The first OSS entry

• 1.5B parameters

• 26B Python tokens from BigQuery

Some Findings:

• Ca. 70% duplication – deduplication is key

• Code files can be very long
• Segment into windows of 1,024

• This is common in NL training too

https://huggingface.co/blog/codeparrot

https://huggingface.co/blog/codeparrot

PolyCoder

Our entry from CMU

• 2.7B parameters

• Trained on 12 languages

Some Findings:

• Edge of single-node/“lab-machine” scale training
• Ca. 45 days on 8 * RTX 8000 48GB

• Further insights into sampling temperature

https://arxiv.org/pdf/2202.13169.pdf

A Systematic Evaluation of Large Language Models of Code

• The good news: PolyCoder outperforms Codex on C

https://arxiv.org/pdf/2202.13169.pdf – NOTE: CodeParrot Python score is likely incorrect, should be ca. 2.9

https://arxiv.org/pdf/2202.13169.pdf

A Systematic Evaluation of Large Language Models of Code

• The good news: PolyCoder outperforms Codex on C

• The bad news: most LMs, even some trained on less code, are better on others

https://arxiv.org/pdf/2202.13169.pdf – NOTE: CodeParrot Python score is likely incorrect, should be ca. 2.9

https://arxiv.org/pdf/2202.13169.pdf

Goal: understand what makes Codex work

• It seems unreasonably effective

https://arxiv.org/pdf/2202.13169.pdf

A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work

• It seems unreasonably effective

• What gives? It does more data preprocessing, but CodeParrot does the same

https://arxiv.org/pdf/2202.13169.pdf

A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work

• It seems unreasonably effective

• What then? Candidate explanations:

https://arxiv.org/pdf/2202.13169.pdf

A Systematic Evaluation of Large Language Models of Code

Initialization

Training

Batch Size

• Large batches yield lower loss
• 2M+ tokens per batch is now common

• But, greatly increases GPU needs
• At 2.7B params, a 48GB GPU can fit ca. 215 tokens

• We can simulate larger batches with “gradient accumulation”, but that is very slow

https://arxiv.org/pdf/2001.08361.pdf

https://arxiv.org/pdf/2001.08361.pdf

Pre-Training: Let’s Talk GPT-x

• Various open source LLMs exist
• Mainly of interest: GPT-J, GPT-Neo, GPT-NeoX

• Trained with/by EleutherAI

• Up to 20B parameters (NeoX)

• Trained on The Pile
• Large web-crawl including GitHub (ca. 10%) & StackOverflow

• “Third” option, besides code-only or NL first, then Code

https://arxiv.org/pdf/2101.00027.pdf

https://arxiv.org/pdf/2101.00027.pdf

Let’s Talk GPT-x

• Trained far longer, but on similar #code tokens

https://arxiv.org/pdf/2202.13169.pdf

https://arxiv.org/pdf/2202.13169.pdf

Let’s Talk GPT-x

• Trained far longer, but on similar #code tokens

• Around 100M parameters, CodeParrot is decidedly better, followed by PolyCoder

https://arxiv.org/pdf/2202.13169.pdf

https://arxiv.org/pdf/2202.13169.pdf

Let’s Talk GPT-x

• Trained far longer, but on similar #code tokens

• But in 1-3B range, Neo is clearly better

https://arxiv.org/pdf/2202.13169.pdf – NeoX 20B is even better, has been benchmarked here https://arxiv.org/pdf/2204.05999.pdf

https://arxiv.org/pdf/2202.13169.pdf
https://arxiv.org/pdf/2204.05999.pdf

Let’s Talk GPT-x

• Trained far longer, but on similar #code tokens

• But in 1-3B range, Neo is clearly better

• CodeParrot saw the most Python tokens – evidently important at small scale
• But at 1B+ parameter scale, total training data volume matters, a lot

• Neo saw 10-15x as many tokens

• CodeParrot & PolyCoder are seriously underfitting for their size
• We trained 2.7B parameters with ~40B tokens (seen); 400B would have been better

• Unrealistic on a single node

• What is the best pretraining/initialization signal?

CodeGen

A 3-tier training regime

1. Initialize on The Pile

2. Calibrate on 6 languages from BigQuery GitHub

3. Fine-tune on Python-only

https://arxiv.org/pdf/2203.13474.pdf

https://arxiv.org/pdf/2203.13474.pdf

CodeGen

Key observations:

• NL Scaling is decent, but capped
• Helpful temperature observations

https://arxiv.org/pdf/2203.13474.pdf

https://arxiv.org/pdf/2203.13474.pdf

CodeGen

Key observations:

• NL Scaling is decent, but capped
• Helpful temperature observations

• Multi-lingual training helps modestly
• (note change in y-range)

https://arxiv.org/pdf/2203.13474.pdf

https://arxiv.org/pdf/2203.13474.pdf

CodeGen

Key observations:

• NL Scaling is decent, but capped
• Helpful temperature observations

• Multi-lingual training helps modestly
• (note change in y-range)

• Monolingual fine-tuning is crucial
• First to match Codex

• Is “Multi” before “Mono” necessary?
• Unclear, Codex suggests not

https://arxiv.org/pdf/2203.13474.pdf

https://arxiv.org/pdf/2203.13474.pdf

How to Match Codex

• Data
• Several 100B tokens required

• Rarely available for a single programming language; NL initialization works well

• Language-specific fine-tuning (50GB or more) is key

• Model
• Performance increases log-linearly with parameters

• 2B to 6B parameters is a sweet-spot (for now)
• Low memory footprint enables large batch sizes; performance just 10%-25% shy of Codex

• Fairly good latency, but needs work

• Resources (for 2.7B parameters)
• Memory: 2.5TB+ of RAM, for 2M tokens per batch without gradient accumulation

• Compute: ca. 200 PetaFLOP/s Days ≈ 3 weeks on 64 A100s (at 45% throughput)

• Both scale linearly with model size; 12B parameters needs 4-5x as much

Open Research Questions

• Fundamentally: Better Scaling Laws for Code
• Chinchilla suggests smaller models, more data

• If same for code, PolyCoder was near-optimal*
• The trick is finding that much mono-lingual data

• Context window: 4,096 vs. 2,048
• AFAIK, only Codex uses the former

• Code files are large – it should help

• But, 4K is expensive, all-but necessitates sparse/dense attention

• Tokenization: PolyCoder vocabulary is code-specific, Codex & others aren’t
• Codex’s vocab seems to be GPT-3 + sequences of 1 – 24 spaces.

• Does it matter? This work suggests some code-specific tokenization might help:
https://openreview.net/pdf?id=rd-G1nO-Jbq
• But note: no results on LLMs.

https://arxiv.org/pdf/2203.15556.pdf -- We used 1.4e21 FLOPs; Chinchilla suggests using that budget to train ~3-4B parameters and ~75B tokens

https://openreview.net/pdf?id=rd-G1nO-Jbq
https://arxiv.org/pdf/2203.15556.pdf

Outline

Intro to (Foundation)
Language Models

State of the Field
Trends, findings,
questions

Opportunities Challenges

What’s Next?

• Breaking free from left-to-right
• FAIR’s InCoder, Codex edit mode

• Iteratively refining generations

• New Scaling Frontiers
• Google’s PaLM

• New Tasks
• Repair, type prediction, translation

InCoder

• Causal Masking
• I.e., decoder-only

• Drop 1+ random spans

• Infill using placeholders

• Train on Python + S.O.

• Up to 6.7B params

https://arxiv.org/pdf/2204.05999.pdf

InCoder

• Causal Masking
• I.e., decoder-only

• Drop 1+ random spans

• Infill using placeholders

• Train on Python + S.O.

• Up to 6.7B params

Enables tons of tasks
• Variable naming

• Type inference

• Completion

• Repair

https://arxiv.org/pdf/2204.05999.pdf

InCoder

• Based on Causal Masking
• Powerful idea! Suffix context is very helpful

• Probably worth exploring masking strategies beyond Poisson-random on tokens

https://arxiv.org/pdf/2204.05999.pdf

Codex can do this too

• Not many details
• Can train like this with encoder/decoder setup (see also (Code)T5)

https://openai.com/blog/gpt-3-edit-insert/ – https://arxiv.org/pdf/2005.05339.pdf

https://openai.com/blog/gpt-3-edit-insert/
https://arxiv.org/pdf/2005.05339.pdf

Iterating (CodeGen, Austin et al.)

• Who gets everything right the first time?
• Iteration is surprisingly feasible!

• Never explicitly trained for, just concatenate history
• Is that good/bad? Who knows!

https://arxiv.org/pdf/2203.13474.pdf – https://arxiv.org/pdf/2108.07732.pdf

https://arxiv.org/pdf/2203.13474.pdf
https://arxiv.org/pdf/2108.07732.pdf

PaLM(-Coder) – 535B parameters

Data: 780B tokens Google internal web crawl

Code: 39B tokens from 24 languages, 39B tokens

• Mostly Java, HTML, JS

• Followed by odd fine-tuning regime, mostly Python

Some Findings:

• Even plain PaLM matchers/outperforms Codex 12B
• Despite training on just 2.7B Python tokens

• Hard to account for model scale, of course – need new laws

• Also good at: repair, translation

• Large models are very likely to memorize code
https://arxiv.org/pdf/2204.02311.pdf

https://arxiv.org/pdf/2204.02311.pdf

Outline

Intro to (Foundation)
Language Models

State of the Field
Trends, findings,
questions

Opportunities Challenges

The Cost of Scaling

• Academia is priced out
• Leads to fragmented knowledge

https://cacm.acm.org/magazines/2022/1/257443-the-growing-cost-of-deep-learning-for-source-code/fulltext
Costs based on approximate PetaFlop seconds at $3/h per V100 GPU
https://twitter.com/Skiminok/status/1512097828373377026 – and just to be clear, I think very highly of Alex

PolyCoder

https://cacm.acm.org/magazines/2022/1/257443-the-growing-cost-of-deep-learning-for-source-code/fulltext
https://twitter.com/Skiminok/status/1512097828373377026

Forgetting Natural Language

Fine-tuning solely on code is powerful

• See PALM, CodeGen, Codex

• But, models tend to forget their NL training days
• That’s not ideal for communicating with humans

CodeGen-NL 6.1B:

CodeGen-Multi 6.1B:

Q: How to sum items in a list in Python?
I have a list of items and I want to sum them. How can I do this?

A:
You can use the sum function:
>>> l = [1,2,3,4,5]
>>> sum(l)
15

Q: Tensorflow session is not defined.
"""
if not tf.contrib.eager.in_eager_mode():
raise RuntimeError('tf.contrib.eager.in_eager_mode() must be True.')

return tf.contrib.eager.get_default_session()

Reliability

• LLMs don’t know to generate semantically correct code
• We just hope they do based on seeing enough data – spoilers: they don’t

• In fact, poor prompts make them more likely to generate vulnerable code

• Not just a matter of data volume: models associate prompts with good/bad examples seen

• That creates opportunities for prompt engineering
• E.g., Jigsaw, page 26 of PALM

• … which seems awfully palliative to me

• What is the alternative?
• Not sure! Tests are nice, but rarely available – should models write those too?

• Bringing static analysis in the loop may help

• Nothing definitive yet

https://arxiv.org/pdf/2108.09293.pdf?nylayout=pc
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2112.02969.pdf
https://arxiv.org/pdf/2204.02311.pdf

Questions?

Thanks to my CMU collaborators: Frank Xu, Uri Alon, Graham Neubig!

