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Why We're Here

package main

type CategorySummary struct {
string
int

GitHub Copilot (June 2021) Floateu

L] Closed-source func createTables(db *sql.DB) {

db.Exec("CREATE TABLE tasks (id INTEGER PRIMARY KEY, title TEXT, value INTEGER, category TEXI

e Limited details

func createCategorySummaries(db *sql.D

https://copilot.github.com/
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Language Modeling

Language is largely “left-to-right”

Movies

lam goingtothe _ grocerystore | T I
meeting A

Recurrent Neural Networks (RNNs) capture this naturally

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Language Modeling

RNNs condense all history into a single state
... which is provably problematic

think I <EOS>| 2 Je > pense ca > <EOS>

https://colah.github.io/posts/2015-01-Visualizing-Representations/ — Learning long-term dependencies with gradient descent is difficult, Bengio, Simard & Frasconi, TNN 1994



https://colah.github.io/posts/2015-01-Visualizing-Representations/

Attention: Learn to Ask
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https://distill.pub/2016/augmented-rnns/
https://medium.com/hackernoon/attention-mechanism-in-neural-network-30aaf5e39512
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https://distill.pub/2016/augmented-rnns/
https://medium.com/hackernoon/attention-mechanism-in-neural-network-30aaf5e39512
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Transformers

Allow for unprecedented scaling

* A key property of foundation models

Transformers asymptotically outperform LSTMs
due to improved use of long contexts
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Scaling Laws for Neural Language Models. Kaplan et al., 2020. https://arxiv.org/pdf/2001.08361.pdf



https://arxiv.org/pdf/2001.08361.pdf

Transformers Are Good Foundation Models

1. Strong, consistent scaling with compute

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

10
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Scaling Laws for Neural Language Models. Kaplan et al., 2020. https://arxiv.org/pdf/2001.08361.pdf
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Transformers Are Good Foundation Models

1. Strong, consistent scaling with compute

2. Powerful initialization from (generic) pretraining

Text Task
Prediction | Classifier

12x —

Layer Norm

 u—

Feed Forward
[ 3

Layer Norm

+

Masked Multi
Self Attention
' 3

Text & Position Embed

Classification

Entailment

Similarity

Multiple Choice

Start Text Extract :|—> Transformer Linear

Start Premise Delim | Hypothesis | Extract | (> Transformer | Linear
Start Text 1 Delim Text 2 Extract | Transformer

= Linear

Start Text 2 Delim Text 1 Extract | - Transformer

Start Context Delim Answer 1 | Extract | = Transformer (= Linear
Start Context Delim Answer 2 | Extract | |+ Transformer | Linear
Start Context Delim Answer N | Extract | = Transformer > Linear

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language understanding paper.pdf



https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Transformers Are Good Foundation Models

1. Strong, consistent scaling with compute
2. Powerful initialization from (generic) pretraining

3. Emergent capabilities at large scale

Zero-shot One-shot Few-shot
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GPT-3 (Brown et al., 2020), https://arxiv.org/pdf/2005.14165.pdf
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Software: We Scale Too
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Note: orange is closed-source

https://arxiv.org/pdf/2202.13169.pdf
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Models: a Bird’s Eye View

Trained entirely on Code:

e CodeParrot (Misc., 2021)

e PolyCoder (CMU, 2022)

* InCoder (FAIR, 2022)
Trained mostly on NL:

* GPT-Neo/J/NeoX (Misc + EleutherAl, 2021/2)
 PALM (Google, 2022)

e Austin et al. (Google, 2021)
A bit of both:

e Codex (2021, OpenAl)

* CodeGen (2022, Salesforce)

I’ll discuss best-practice
based on all of these



P
What Makes a Good LLM for Code-

1. Data
* Volume
* Preprocessing

2. Model Size

* Parameters

A SYSTEMATIC EVALUATION OF LARGE LANGUAGE
MODE] g OF CoDpE

Frank Xu, Urj Alon, Graham Neubig, Vincent J. Hellendoorn
School of Computer Science

Carnegije Mellon University

{fangzhex »ualon, gneubiglecs. Cmu. edu, vhellendoorn@cmu .edu

ABSTRACT

3. Initialization
* NL pretraining

Large language models (LMs) of code have recently shown tremendoys promise
in completing code and symhcsizing code from natural languagc descriptions.
However, the curreng State-of-the-gart code LMs (e, &., Codex (Chen et al., 2021))
are not publicly available, lcaving Mmany questiong about thejr model and dagy
design decisions. We aim to fil] jp Some of these blanksg through 5 Systematic
evaluation of the largest existing models- Codex, GPTJ, GPT-Neo, GpPT: -NeoX-
20B, and CodeParro, across varioys Programming languages, Although Codex
itself is noy open-source, we find that existing open-source models do achieve
close results jn some Programming languages, although largeted mainly for natyrq]
language modeling. We further identify an important missing piece in the form of
a large open-source mode] trained exclusively op 4 multi-lingya] corpus of code.
We release 3 new model]. PolyCoder. with 2.7B Parameters based op the GPT-2
architecture, thyy Was trained op 249GB of code across 12 Programming languages
On a single machipe. In the C Programming language, PolyCoder outperforms
all modely including Codex. Oyr trained mode]s are open-source gnq publicly
available gt https: //github. com/VHellendoorn/f‘f\""f‘ 'Y}

future research V1T 8 T P L

4. Training
* Code tokens seen
* Language effects
e Batch size & misc.




Pass Rate vs Model Size

0.7 4 —— pass@1 (T*=0.2)
0.6 pass@100 (T*=0.8)
Codex |
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The first many-billion parameter LM for code 0.2
. . . 0.1
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Examples with subtle bugs in context,
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No examples in context,
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Examples with subtle bugs in context,
no instructions
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' no instructions

No examples in context,
no instructions

Some Findings:

0.20

e Strong, log-linear scaling after ~ 50M params

* Prompting matters, even non-functional aspects

pass@1 (Fraction Correct)
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https://arxiv.org/pdf/2107.03374.pdf

Non-embedding parameters



CodeParrot ﬁ

CodeParrot (110M) Performance

+58%
EEN Raw data
12 1 mmm Deduplicated data

The first OSS entry

* 1.5B parameters

pass@k

» 26B Python tokens from BigQuery

Some Findings:

k=1 k=10 k=100

* Ca. 70% duplication — deduplication is key R —

* Code files can be very long sample2 [N
* Segment into windows of 1,024 :.:3 mEmmRmRmRm—
* This is common in NL training too length
EOS Token
N

EEEEEEEEEEEEEE NN EEEEEEs
https://huggingface.co/blog/codeparrot mputl Input2 Input3
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PolyCoder

1.50
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Our entry from CMU 1.25 - doom

* 2.7B parameters
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e Trained on 12 languages 0.50-
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(a) Training

Some Findings:

» Edge of single-node/“lab-machine” scale training
* Ca. 45 days on 8 * RTX 8000 48GB

* Further insights into sampling temperature

https://arxiv.org/pdf/2202.13169.pdf
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A Systematic Evaluation of Large Language Models of Code

* The good news: PolyCoder outperforms Codex on C

B Codex* M PolyCoder 2.7B GPT-Neo 2.7B W GPT-J6B W GPT-NeoX 20B CodeParrot

C

* Since the exact training set of Codex 1s unknown, it may include files from these test sets

rendering Codex’s results overly-optimistic.
https://arxiv.org/pdf/2202.13169.pdf — NOTE: CodeParrot Python score is likely incorrect, should be ca. 2.9
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A Systematic Evaluation of Large Language Models of Code

* The good news: PolyCoder outperforms Codex on C

 The bad news: most LMs, even some trained on less code, are better on others

B Codex* M PolyCoder 2.7B GPT-Neo 2.7B ®m GPT-J6B ™ GPT-NeoX 20B ™ CodeParrot

C C# C++ Go Java JavaScript PHP Python  Ruby Rust Scala TypeScript

* Since the exact training set of Codex is unknown, it may include files from these test sets

rendering Codex’s results overly-optimistic.
https://arxiv.org/pdf/2202.13169.pdf — NOTE: CodeParrot Python score is likely incorrect, should be ca. 2.9
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A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work

* |t seems unreasonably effective

30+
—e— PolyCoder —e— PolyCoder —e— PolyCoder
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(a) Pass@1 (b) Pass@10 (c) Pass@100

https://arxiv.org/pdf/2202.13169.pdf



A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work

* |t seems unreasonably effective

 What gives? It does more data preprocessing, but CodeParrot does the same

PolyCoder CodeParrot Codex
Dedup Exact Exact Unclear, mentions “unique”
Filtering Files > 1 MB, < 100 to- Files > IMB, max line length >  Files > 1MB, max line length >
kens 1000, mean line length > 100, 1000, mean line length > 100,
fraction of alphanumeric charac- auto-generated (details unclear),
ters < (.25, containing the word  contained small percentage of al-
“auto-generated” or similar in  phanumeric characters (details
the first 5 lines unclear)
Tokenization Trained GPT-2 tok- Trained GPT-2 tokenizer on GPT-3 tokenizer, add multi-

enizer on a random 5%
subset (all languages)

train split

whitespace tokens to reduce re-
dundant whitespace tokens

https://arxiv.org/pdf/2202.13169.pdf



A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work
* |t seems unreasonably effective

 What then? Candidate explanations:

PolyCoder (2.7B) CodeParrot (1.5B) Codex (12B)

Model Initialization From scratch From scratch Initialized from GPT-3 C e .

NL Knowledge Learned from com- Learned from com- ‘Natural language knowl- | Initialization
ments in the code ments in the code edge from GPT-3

Learning Rate 1.6e-4 2.0e-4 le-4

Optimizer AdamW AdamW AdamW

Adam betas 0.9, 0.999 0.9, 0.999 0.9, 0.95

Adam eps le-8 le-8 le-8

Weight Decay - 0.1 0.1

Warmup Steps 1600 750 175

Learning Rate Decay Cosine Cosine Cosine

Batch Size (#tokens) 262K 524K 2M

Training Steps 150K steps, 39B tokens 50K steps, 26B tokens 100B tokens

Context Window 2048 1024 4096

https://arxiv.org/pdf/2202.13169.pdf



Batch Size

e Large batches yield lower loss
e 2M+ tokens per batch is now common

* But, greatly increases GPU needs

* At 2.7B params, a 48GB GPU can fit ca. 21° tokens
* We can simulate larger batches with “gradient accumulation”, but that is very slow

1 Critical Batch Size vs. Performance
5 108 - Minimum serial steps eQ“: Data requirements ’n;o‘
5 increases negligibly — —~ _9\5" grow relatively slowly 2 1064 )
= X\ X
= (%) | o y
£ 108 R W% 1 < f/\’
8 Y. 8 e o
o & 105 4 B AATh
2 104 A0 . . £
£ 1071 . Optimal model size S ¥ .t
= s\ze . : S
$ ode! increases very quickly T (e e —
= 0*“ m 1041 g ™+ —e— Empirical B¢, N=3M
% 102 000,00 = C L Empirical Berie, N = 85M
e S\ 3 Srie” oo Bgp=2.1x 108 tokens-L %8
2 = L g Noise Scale Measurement
10) 1 ' ' ' ) ©10° SRR 100 100 100
10°8 10°6 1074 10~2 100 101 6x10 4x10Y 3x10
Compute (PF-days) WebText2 Train Loss

https://arxiv.org/pdf/2001.08361.pdf
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Pre-Training: Let’s Talk GPT-x @

cleutherprl

* Various open source LLMs exist
e Mainly of interest: GPT-J, GPT-Neo, GPT-NeoX
* Trained with/by EleutherAl
e Up to 20B parameters (NeoX)

* Trained on The Pile
e Large web-crawl including GitHub (ca. 10%) & StackOverflow
* “Third” option, besides code-only or NL first, then Code

Composition of the Pile by Category
= Academic ® Internet = Prose * Dialogue * Misc

https://arxiv.org/pdf/2101.00027.pdf
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Let’s Talk GPT-x

* Trained far longer, but on similar #code tokens

Model Pass@1 Pass@10 Pass@l00 Tokens Trained Code Tokens Python Tokens
PolyCoder (160M) 2.13% 3.35% 4.88% 39B 39B 2.5B
PolyCoder (400M) 2.96% 5.29% 11.59% 39B 39B 2.5B
PolyCoder (2.7B) 5.59% 9.84% 17.68% 39B 39B 2.5B
CodeParrot (110M) 3.80% 6.57% 12.78% 26B 26B 26B
CodeParrot (1.5B) 3.58% 8.03% 14.96% 26B 26B 26B
GPT-Neo (125M) 0.75% 1.88% 2.97%

GPT-Neo (1.3B) 4.79% 7.47% 16.30%

GPT-Neo (2.7B) 6.41% 11.27% 21.37%

GPT-J (6B) 11.62% 15.74% 27.74%

Codex (300M) 13.17% 20.37% 36.27% 100B* 100B* 100B*
Codex (2.5B) 21.36% 35.42% 59.50% 100B* 100B* 100B*
Codex (12B) 28.81% 46.81% 72.31% 100B* 100B* 100B*

https://arxiv.org/pdf/2202.13169.pdf
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Let’s Talk GPT-x

* Trained far longer, but on similar #code tokens

* Around 100M parameters, CodeParrot is decidedly better, followed by PolyCoder

Model Pass@1 Pass@10 Pass@l00 Tokens Trained Code Tokens Python Tokens
PolyCoder (160M) 2.13% 3.35% 4.88% 2.5B

CodeParrot (110M) 3.80% 6.57% 12.78%

GPT-Neo (125M) 0.75% 1.88% 2.97%

https://arxiv.org/pdf/2202.13169.pdf
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Let’s Talk GPT-x

* Trained far longer, but on similar #code tokens

* Butin 1-3B range, Neo is clearly better

Model Pass@1 Pass@10 Pass@l00 Tokens Trained Code Tokens Python Tokens

PolyCoder (2.7B) 5.59% 9.84% 17.68% 39B

CodeParrot (1.5B) 3.58% 8.03% 14.96% 26B

GPT-Neo (1.3B) 4.79% 7.47% 16.30% 380B
GPT-Neo (2.7B 6.41% 11.27% 21.37% 420B

https://arxiv.org/pdf/2202.13169.pdf — NeoX 20B is even better, has been benchmarked here https://arxiv.org/pdf/2204.05999.pdf



https://arxiv.org/pdf/2202.13169.pdf
https://arxiv.org/pdf/2204.05999.pdf

Let’s Talk GPT-x

Trained far longer, but on similar #code tokens

But in 1-3B range, Neo is clearly better

CodeParrot saw the most Python tokens — evidently important at small scale

e But at 1B+ parameter scale, total training data volume matters, a lot
* Neo saw 10-15x as many tokens

CodeParrot & PolyCoder are seriously underfitting for their size
* We trained 2.7B parameters with ~40B tokens (seen); 400B would have been better
* Unrealistic on a single node
* What is the best pretraining/initialization signal?




CodeGen 7
CODEGEN

A 3-tier training regime
1. Initialize on The Pile
2. Calibrate on 6 languages from BigQuery GitHub

3. Fine-tune on Python-only

https://arxiv.org/pdf/2203.13474.pdf
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CodeGen

Key observations:

* NL Scaling is decent, but capped
* Helpful temperature observations

https://arxiv.org/pdf/2203.13474.pdf
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CodeGen

Key observations:

* NL Scaling is decent, but capped
* Helpful temperature observations

* Multi-lingual training helps modestly
* (note change in y-range)

https://arxiv.org/pdf/2203.13474.pdf
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CodeGen

Key observations:

NL Scaling is decent, but capped
* Helpful temperature observations

Multi-lingual training helps modestly
* (note change in y-range)

Monolingual fine-tuning is crucial
* First to match Codex

Is “Multi” before “Mono” necessary?
* Unclear, Codex suggests not

https://arxiv.org/pdf/2203.13474.pdf
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How to Match Codex

* Data

e Several 100B tokens required
e Rarely available for a single programming language; NL initialization works well

* Language-specific fine-tuning (50GB or more) is key

* Model

e Performance increases log-linearly with parameters

e 2B to 6B parameters is a sweet-spot (for now)
* Low memory footprint enables large batch sizes; performance just 10%-25% shy of Codex

* Fairly good latency, but needs work

* Resources (for 2.7B parameters)
* Memory: 2.5TB+ of RAM, for 2M tokens per batch without gradient accumulation
* Compute: ca. 200 PetaFLOP/s Days = 3 weeks on 64 A100s (at 45% throughput)
* Both scale linearly with model size; 12B parameters needs 4-5x as much
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Open Research Questions

10B

Parameters

 Fundamentally: Better Scaling Laws for Code
e Chinchilla suggests smaller models, more data

 If same for code, PolyCoder was near-optimal*
* The trick is finding that much mono-lingual data 10M — - - e
10 10 10 10

* Context window: 4,096 vs. 2,048 FLops
* AFAIK, only Codex uses the former

* Code files are large — it should help
* But, 4K is expensive, all-but necessitates sparse/dense attention

» Tokenization: PolyCoder vocabulary is code-specific, Codex & others aren’t

e Codex’s vocab seems to be GPT-3 + sequences of 1 — 24 spaces.

e Does it matter? This work suggests some code-specific tokenization might help:
https://openreview.net/pdf?id=rd-G1n0-Jbqg

e But note: no results on LLMs.

1.0B

100M

https://arxiv.org/pdf/2203.15556.pdf -- We used 1.4e2! FLOPs; Chinchilla suggests using that budget to train ~3-4B parameters and ~75B tokens

Approach 1
Approach 2
Approach 3

+ Kaplan et al (2020)

Chinchilla (70B)
Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG


https://openreview.net/pdf?id=rd-G1nO-Jbq
https://arxiv.org/pdf/2203.15556.pdf
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What’s Next?

* Breaking free from left-to-right
* FAIR’s InCoder, Codex edit mode
* [teratively refining generations

* New Scaling Frontiers
* Google’s PaLM

def count_words(filename: str) -» Dict[str, int]:

"""Count the number of occurrences of each word in the file."""

with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts

* New Tasks
* Repair, type prediction, translation
Java Python
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| N CO d er Training

Original Document Masked Document
def count words(filename: str) -> Dict[str, int]: def count words(filename: str) -> Dict[str, int]:
. """Count the number of occurrences of each word in the file.""" """Count the number of occurrences of each word in
([ ] Causal MaSkIng with open(filename, 'r') as f: with open(filename, 'r') as f:
word_counts = {} in word_counts:
for line in f: word_counts[word] += 1
[ ] - —
I'e'l deCOder Only for word in line.split(): else:
if word in word_counts: word_counts[word] = 1
d DrOp 1+ random Spans word_counts[word] += 1 return word_counts
. . else: word_counts = {}
¢ Infill using placeholders word_counts[word] = 1 for 1line in f:
return word_counts for word in line.split():

if word <EOM>

* Train on Python + S.O.

* Upto 6.7B params

https://arxiv.org/pdf/2204.05999.pdf



InCoder

e Causal Masking
* |.e., decoder-only
e Drop 1+ random spans
* Infill using placeholders

* Train on Python + S.O.
* Upto 6.7B params

Enables tons of tasks
* Variable naming
* Type inference
* Completion
* Repair

https://arxiv.org/pdf/2204.05999.pdf

Training

Original Document

Masked Document

def count words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file.
with open(filename, 'r') as f:

word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts

def count words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in

with open(filename,

'r') as f:
in word_counts:
word_counts[word] += 1
else:
word_counts[word] =1
return word_counts
word_counts = {}
for line in f:
for word in line.split():
if word <EOM=

Zero-shot Inference

Type Inference

Variable Name Prediction

def count _words(filename: str) -> Dict[str, int]:

"""Count the number of occurrences of each word in the file.

with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():

if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts

def count words(filename:
"""Count the number
wWwith open(filename,
word_count = {}

for line in f:

str) -> Dict[str, int]:
of occurrences of each word 1in
'r') as f:

won

for word in line.split():
if word in word_count:
word_count [word] += 1
else:

word_count [word] = 1
return word_count




InCoder

* Based on Causal Masking
* Powerful idea! Suffix context is very helpful
* Probably worth exploring masking strategies beyond Poisson-random on tokens

Single-Line Infilling Multi-Line Infilling
0.8 1 074 — CM Infilling
0.74 /\ L-R Single
0.6 —— L-R Reranking
0.6
2 £ 0.5
o 0.5 '
0 v 0.4 1
5 0.4 ©
m m 0.3_
0.34 —— CMInfilling
0.2 L-R Single 0.2
—— L-R Reranking
0.1
0.1- T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Fraction of Lines in Right Context Fraction of Lines in Right Context

https://arxiv.org/pdf/2204.05999.pdf



Codex can do this too

* Not many details
* Can train like this with encoder/decoder setup (see also (Code)T5)

Infilling Task
def get files(path: str, size: int): Input She ate [blank] for [blank].
def prune(dirp, files): Output She ate leftover pasta for lunch.

for file in files:
file = os.path.join(dirp, file)
if os.path.getsize(file) > size: Data She ate leftover pasta for lunch.
: i Input She ate [blank] for [blank].
yield file

Target leftover pasta [answer] lunch [answer]
for (dirp, , files) in os.walk(path):

Our Infilling Framework

yield from prune(dirp, files) Train Infilling
Input Input
Language N
Data [sep] Mcg)d e‘lg [sep] Output
Target Target

https://openai.com/blog/gpt-3-edit-insert/ — https://arxiv.org/pdf/2005.05339.pdf



https://openai.com/blog/gpt-3-edit-insert/
https://arxiv.org/pdf/2005.05339.pdf

iterating (CodeGen, Austin et al.)

* Who gets everything right the first time?

* lteration is surprisingly feasible!

* Never explicitly trained for, just concatenate history

* Isthat good/bad? Who knows!

Prompt

https://arxiv.org/pdf/2203.13474.pdf — https://arxiv.org/pdf/2108.07732.pdf

user user

user

| need to write a Python function called

. snake_to_camel. Here's a description: (a) human provides
- 'Write a function to convert a snake a description

. case string to camel case string".

(b) model asks for

Can you give me an example?
few-shot examples youg P

i assert .
. snake to camel('python program') == (c) user provides an
P — o= . Py -Prog - example (can be
i 'PythonProgram .
i automatic)
(d) model attempts to def snake_?o_camel(str):
str = str.title() 0
solve the problem (but str = str.replace(’ *,")
model fails tests) -rep = tests fail
return str
Close, but you need to replace the (e) human provides
. underscore with an empty string. feedback
def snake to_camel(str):
(f) success (model str = str.title() /
passes tests) str = str.replace(’_", ") tests pass
return str

jopow . lepow

jppow |



https://arxiv.org/pdf/2203.13474.pdf
https://arxiv.org/pdf/2108.07732.pdf

PaLM-Coder

PaLM(-Coder) — 535B parameters ek pasen
—®- Human Eval
i 3 S
Data: 780B tokens Google internal web crawl S
oS 601 60 -
Code: 39B tokens from 24 languages, 39B tokens g
= 401 40 -
* Mostly Java, HTML, JS k%
. . . 20 201
* Followed by odd fine-tuning regime, mostly Python 8- Himan Evl (2526100
0 I -’- Tranch:der [pass@ZS)I 0
8b 64b 535b 8 535b
o Model Scale
Some Findings: o
. _E_j 15% - 8b
* Even plain PaLM matchers/outperforms Codex 12B E -~ 62b
B 540b
* Despite training on just 2.7B Python tokens L 10%:
* Hard to account for model scale, of course — need new laws S 8%]
* Also good at: repair, translation S Z; J
o 7]
* Large models are very likely to memorize code O 0% J -

Web Wiki Social Media News  Books  Code
https://arxiv.org/pdf/2204.02311.pdf Corpus



https://arxiv.org/pdf/2204.02311.pdf

Outline

Intro to (Foundation) State of the Field Opportunities Challenges

Language Models Trends, findings,
guestions



== Alex Polozov
@Skiminok

Th e COSt Of Sca | | n g Tbh personally, | find it sad that the know-how of

* Academia is priced out

training LMs is spread across multiple competing
organizations, hundreds of researchers' & research
engineers' brains, and rarely systematically analyzed
and compared, let alone written.

11:59 AM - Apr 7, 2022 - Twitter for Android

* Leads to fragmented knowledge
PolyCoder

o Parameter

~$30,000 i Tokens
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Karampatsis Lachaux etal. CodeBert CuBert IntelliCode Codex
etal. (UoE) (Facebook) (Microsoft) (Google) Compose (OpenAl)
(Microsoft)

https://cacm.acm.org/magazines/2022/1/257443-the-growing-cost-of-deep-learning-for-source-code/fulltext
Costs based on approximate PetaFlop seconds at $S3/h per V100 GPU
https://twitter.com/Skiminok/status/1512097828373377026 — and just to be clear, | think very highly of Alex
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https://cacm.acm.org/magazines/2022/1/257443-the-growing-cost-of-deep-learning-for-source-code/fulltext
https://twitter.com/Skiminok/status/1512097828373377026

Forgetting Natural Language

Fine-tuning solely on code is powerful
* See PALM, CodeGen, Codex

* But, models tend to forget their NL training days
* That’s not ideal for communicating with humans

Q: How to sum items in a list in Python?

A:

You can use the sum function:
>>> 1 =1[1,2,3,4,5]

>>> sum(1)

15

CodeGen-NL 6.1B:

I have a list of items and I want to sum them. How can I do this?

Q: Tensorflow session is not defined.

if not tf.contrib.eager.in_eager_mode():

CodeGen-Multi 6.1B:

return tf.contrib.eager.get _default_session()

raise RuntimeError('tf.contrib.eager.in_eager_mode() must be True.')

CODEGEN-NL 6.1B
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Reliability

* LLMs don’t know to generate semantically correct code
* We just hope they do based on seeing enough data — spoilers: they don’t
 In fact, poor prompts make them more likely to generate vulnerable code
* Not just a matter of data volume: models associate prompts with good/bad examples seen

* That creates opportunities for prompt engineering
* E.g., Jigsaw, page 26 of PALM
... which seems awfully palliative to me

 What is the alternative?
* Not sure! Tests are nice, but rarely available — should models write those too?

* Bringing static analysis in the loop may help
* Nothing definitive yet


https://arxiv.org/pdf/2108.09293.pdf?nylayout=pc
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2112.02969.pdf
https://arxiv.org/pdf/2204.02311.pdf

Questions?

Thanks to my CMU collaborators: Frank Xu, Uri Alon, Graham Neubig!



