
Jacob Austin, Google AI (presenting the work of many, many people)

Collaborative Coding with Large (and 
Larger) Language Model

1



Why do we care about code?
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Humans use code to ask and answer questions about the world.

(a) Coding lets you retrieve information, analyze and 
visualize data, and perform automation.

(e.g. symbolic 
regression, proof 
assistants, FlashFill)

(e.g. basic Python 
knowledge, pandas, 
matplotlib, web 
scraping)

(b) Code is a way to formalize understanding of 
algorithmic or mechanistic systems.
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Enormous amounts of source code has been written.

● e.g. training sets for some of the models in this space:
● 159GB (Codex), 196GB (PaLM-Coder), 715GB (AlphaCode)

This code contains implicit knowledge about how to write code:

● Design systems
● Break down problems 
● Use APIs
● Write good tests
● Avoid bugs 

Make that explicit? Use this to help developers?

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.02311
https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf
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A bitter lesson of ML/PL (h/t the original bitter lesson)

● Giving raw source code text to model works better than you would think
● Names carry semantic meaning. 

Generating code well --> Help solve lots of practical problems

● Program repair
● Writing documentation
● Test generation
● Code review

Big data-driven approaches do really well!

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Bigger works better!
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LaMDA and PaLM: Google’s LLMs for code 
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LaMDA: Language Model for Dialog Applications:

● Pretraining dataset of ~500B tokens, heavily weighted towards dialog. Only about 
10% of data is code-related (web docs like Stack Overflow).

● Decoder-Only Transformer model (like GPT-3), scales up to 137B params. 

PaLM: Pathways Language Model:

● Pretraining dataset of 800B tokens, with 5% GitHub code, along with other web 
documents, books, multilingual data.

● Similar architecture to LaMDA/GPT-3, some changes to improve inference speed 
(parallel layers, multi-query attention).

● We also fine-tune a version of PaLM on additional code, creating a new model 
called PaLM-Coder.



Overview
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Big language models can

● synthesize programs
● execute programs
● solve math problems
● repair simple bugs
● dialog with humans to 

improve programs

We benchmark models from 
240M parameters to 540B 
parameters.

https://arxiv.org/abs/2108.07732

https://arxiv.org/abs/2108.07732
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AlphaCode, LaMDA and Codex can 
complete code given context to do:

● Coding competitions

● NL -> code tasks

● Code completion (Github 
Copilot)

So what’s next? How can we improve 
these models further?



The MBPP dataset
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The MBPP (Mostly Basic Programming 
Problems) dataset contains 1000 NL to code 
tasks with test cases and example solutions.

These problems are simpler than other 
datasets like APPS which focus on 
competition-style coding.

We generate prompts (in purple) from the 
task, providing both the NL prompt and some 
number of test cases specifying the syntax 
and semantics of the function.

We also convert MathQA to a synthesis 
dataset.



Code ML benchmarks
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Here are a few standard benchmarks we evaluate on, and explanations for why:
● HumanEval: OpenAI’s 164 problem docstring-to-code dataset, containing short but high 

quality problems of varying difficulty.

● MBPP: Google’s dataset of 1000 simple docstring-to-code tasks, containing similar 
problems, although typically of lower quality.

● CodeContests: DeepMind’s code competition dataset, containing a range of competitive 
programming tasks and solutions.

● APPS: A large dataset of competitive programming problems, many of them extremely 
challenging. The dataset is of relatively low quality.

● GSM8K: OpenAI’s “grade-school math” dataset of basic mathematical reasoning problems.

● Physics: A Google-internal dataset of physics problems that can be solved and automatically 
evaluated.



Bigger models pass more tests
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Bigger models ‘solve’ a larger fraction 
of the problems.

We examine models from 240m 
parameters to 137b parameters. We 
also fine-tune models on a small subset 
of the MBPP dataset.

Roughly, a 10x bigger model solves 20% 
more problems

By ‘solve a problem’ here, we mean that 
*any* of 80 samples pass the 
test-cases.



Larger models are more reliable
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Meaning: Larger models also more reliably solve the easier problems.

(Also could be seen as a measure of "confidence")

Out of the 80 samples, what percentage solve the given task?



The types of errors change as the model gets bigger
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For small models, over 80% of the errors 
happen before the test cases can finish

For the largest models, almost all errors 
are failures to pass the test cases.

Perhaps a 
"bitter lesson" 
for ML/PL?



Generally, solutions generalize to held-out tests



But sometimes the model ‘cheats’

Sometimes the model reads the tests and 
hard-codes the answers to the tests

There are plenty of woodall numbers 
besides 383...



Editing questions for clarity helps a lot

We manually edited 100 questions for clarity, fixing function signatures, 
descriptions, etc

This improves performance by a lot! Data quality matters here.



PaLM and PaLM-Coder: Google’s 535B Language Model
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PaLM and PaLM-Coder: Google’s 535B Language Model
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Evaluating LLMs on code: what can we do so far?
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Evaluating LLMs on code: what can we do so far?
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LaMDA 
137B

PaLM 
540B 

Davinci Codex 
v001 (~175B)

PaLM-Coder
540B

Original 
paper

Human Eval
(Chen et al, 2021)

0-shot
pass@100 47.3 76.2 81.7 88.4 72.3 

MBPP
(Austin et al, 2021)

3-shot
pass@80 62.4 75.0 84.4 80.8

Transcoder 
(Lachaux et al, 2020)

3-shot
pass@25 79.8 71.7  82.5 67.2

GSM8K-Python 
(Cobbe et al, 2021)

4-shot
pass@1 7.6 51.3 32.1 50.9

DeepFix (Yasunaga 
& Liang, 2020, 2021)

2-shot
pass@1 4.3 73.7 81.1 82.1 71.7

PaLM Results

https://arxiv.org/abs/2107.03374
https://arxiv.org/pdf/2108.07732.pdf
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2110.14168


Does scale really help?



Humans can interact with models to improve 
programs



Code Dialog 
Assistant

Back and forth with model 
can dramatically improve 
performance.

Models seem to be able to 
correlate natural language 
with code quite seamlessly.

Some failure modes: multiple 
complex instructions still fail. 
Much harder without 
dialog-specific fine-tuning.



We analyzed the model’s mistakes

There are lots of mistakes, and there is 
lots of work to do

A lot of these are what you’d expect, if 
you remember that this is a 
decoder-only LM trained with 
maximum likelihood



Models cannot execute their own code

Maybe unsurprising, given lack of 
executions in the dataset. 

On the other hand, it’s good to 
remember. How well can you understand 
code you can’t execute?

On the other-other hand, we are having 
some success getting this to work now, 
but it requires new techniques.



Unless you let them execute step-by-step

https://openreview.net/pdf?id=iedYJm92o0a

https://openreview.net/pdf?id=iedYJm92o0a
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How do we solve this grounding 
problem?
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Many approaches to “execution grounding”

1. Training Verifiers to Solve Math Word Problems (Cobbe et al. 2021) trains a “verifier” 
model which maps (predicted code) -> p(correctly passing tests). This can be used 
to rerank samples.

2. Show Your Work: Scratchpads for Intermediate Computation (Nye et al. 2022) 
fine-tunes on execution data and allows the model to “talk to itself”, performing 
step-by-step execution in a scratchpad environment.

3. AlphaCode (Li et al. 2022) clusters results by functional equivalence. It generates 
millions of samples, evaluates them on synthetic test cases, quotients by functional 
equivalence, and uses voting to determine which functions to submit.

4. Learning to summarize from human feedback (Stiennon et al. 2020) uses 
reinforcement learning to fine-tuning language models based on a learned reward 
signal. We can use execution as an RL reward signal.

https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=iedYJm92o0a
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2009.01325


Cascades: probabilistic programming with LLMs

1. They all involve inference on directed networks of language models. 

2. They involve breaking down complex tasks into sub-components performed by 
individual models.

3. They involve some kind of Bayesian à posteriori inference over model samples or 
parameters.

code prompt

prompt

thought

code

promptcode



Cascades: probabilistic programming with LLMs

● Verifiers (or pass@k metrics) just do rejection sampling on a learned or oracle judge, 
with this graph: 

● Scratchpads simply do maximum likelihood inference of a graph like this:

This paper also finds improved performance by doing marginal maximum likelihood 
sampling over p(answer | question) rather than p(answer, thought | question).

prompt

thought

code

https://arxiv.org/abs/2203.11171


Cascades: probabilistic programming with LLMs

● Reinforcement learning against a judge (including RL-HF) is just variational inference 
to optimize pΘ(string | judge) in a black-box setting.

● We can amortize rejection sampling from p(sample | judge) by fine-tuning on 
positive samples (possibly iteratively), or using a kind of decision transformer on the 
verifier output, explicitly training a p(sample | judge) model.

sample from this, build dataset of (string, judge) pairs

Task Judge String

finetune an amortized p(string | task, judge) model



● For code, we can combine several language models with a compiler to easily 
implement a sort of “Synthesize, Execute, Debug” loop prompting + RL.

This improves performance on MBPP by 20-30% over 4 turns, and approximates human 
dialog.

● We can also do something like CrossBeam (Shi et al. 2022) or Frangel where we build 
up partially correct programs.

Cascades: learning to debug

Task Code Compiler

# Task: write a function which satisfies these tests
assert foo(4) == 3

def foo(x): # code:
  return x

AssertionError: foo(4) == 4 (expected 3) # execution output

def foo(x): # code:
  return x - 1

https://arxiv.org/abs/2007.08095


Cascades: probabilistic programming with LLMs

https://arxiv.org/abs/2203.14465

https://arxiv.org/abs/2203.14465


Questions?
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Backup slides
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Huge variance in few-shot performance 
based on the choice of which three 
problems we put in prompt

This variance goes away with 
fine-tuning

This will be a challenge for few-shot for 
more difficult programming tasks

Few-shot performance is very sensitive to prompting


