Google

Collaborative Coding with Large (and
Larger) Language Model

Jacob Austin, Google Al (presenting the work of many, many people)

Why do we care about code?

Humans use code to ask and answer questions about the world.

(a) Coding lets you retrieve information, analyze and (e.g. basic Python

visualize data, and perform automation. knowledge, pandas,
matplotlib, web
scraping)

(b) Code is a way to formalize understanding of (e.g. symbolic

algorithmic or mechanistic systems. regression, proof

assistants, FlashFill)

Enormous amounts of source code has been written.

e e.g.training sets for some of the models in this space:
e 159GB (Codex), 196GB (PaLM-Coder), 715GB (AlphaCode)

This code contains implicit knowledge about how to write code:

Design systems
Break down problems
Use APIs

Write good tests
Avoid bugs

Make that explicit? Use this to help developers?

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.02311
https://storage.googleapis.com/deepmind-media/AlphaCode/competition_level_code_generation_with_alphacode.pdf

Big data-driven approaches do really well!

A bitter lesson of ML/PL (h/t the original bitter lesson)

e Giving raw source code text to model works better than you would think
e Names carry semantic meaning.

Generating code well --> Help solve lots of practical problems

Program repair

Writing documentation
Test generation

Code review

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Bigger works better!

Program Synthesis with Large Language Models

Jacob Austin® Augustus Odena”

Maxwell Nye! Maarten Bosoma Henryk Michalewski ~ David Dohan Ellen Jiang Carrie Cai

Michael Terry QuocLe Charles Sutton Competition-Level Code Generation with
AlphaCode

Yujia Li", David Choi”, Junyoung Chung*, Nate Kushman, Julian Schrittwieser”, Rémi Leblond*, Tom
)) Eccles”, James Keeling”, Felix Gimeno”, Agustin Dal Lago”, Thomas Hubert", Peter Choy”, Cyprien de
jaaustii Masson d’Autume”, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Evaluating Large Language 1\ Che.repanov, James Molloy, Daniel J Mz.mkowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de
Freitas, Koray Kavukcuoglu and Oriol Vinyals
* Joint first authors

Mark Chen”! Jerry Tworek *! Heewoo Jun®' Qiming Yuan*! Henrique Ponde de Oliveira Pinto * !
Jared Kaplan “? Harri Edwards' Yuri Burda' Nicholas Joseph? Greg Brockman' Alex Ray' Raul Puri'
Gretchen Krueger ! Michael Petrov' Heidy Khlaaf® Girish Sastry! Pamela Mishkin! Brooke Chan !
Scott Gray ' Nick Ryder ! Mikhail Pavlov! Alethea Power! Lukasz Kaiser! Mohammad Bavarian !
Clemens Winter ! Philippe Tillet! Felipe Petroski Such! Dave Cummings' Matthias Plappert
Fotios Chantzis ' Elizabeth Barnes' Ariel Herbert-Voss' William Hebgen Guss' Alex Nichol! Alex Paino!
Nikolas Tezak ' Jie Tang' Igor Babuschkin! Suchir Balaji' Shantanu Jain' William Saunders '
Christopher Hesse! Andrew N. Carr! Jan Leike! Josh Achiam' Vedant Misra! Evan Morikawa
Alec Radford! Matthew Knight! Miles Brundage! Mira Murati! Katie Mayer! Peter Welinder !
Bob McGrew ! Dario Amodei? Sam McCandlish? Ilya Sutskever! Wojciech Zaremba !

LaMDA and PaLM: Google’s LLMs for code

LaMDA: Language Model for Dialog Applications:

e Pretraining dataset of ~500B tokens, heavily weighted towards dialog. Only about
10% of data is code-related (web docs like Stack Overflow).
e Decoder-Only Transformer model (like GPT-3), scales up to 137B params.

PaLM: Pathways Language Model:

e Pretraining dataset of 800B tokens, with 5% GitHub code, along with other web

documents, books, multilingual data.
e Similar architecture to LaMDA/GPT-3, some changes to improve inference speed

(parallel layers, multi-query attention).
e We also fine-tune a version of PaLM on additional code, creating a new model

called PaLM-Coder.

Overview

| need to write a Python function called count_common. Here's a | need to write a Python function called find_Max_Num. Here's a
description: 'Write a function to count the most common words in description: 'Write a python function to find the largest number
adictionary.’. that can be formed with the given list of digits.".

Can you give me an example? Can you give me an example?
assert count_common(['one’, 'two', 'three’, ‘four’, 'five', 'one’, 'two’, assert find_Max_Num([1,2,3]) == 321

‘one’, 'three’, 'one’]) == [(one’, 4), (two!, 2), (three', 2), (‘four’, 1)]
def find_Max_Num(test_list):

def count_common(list_of words): largest = O
. dict={} -) 0 for i in range(0,len(test_list)):
B I I a n u a e Od e I S Ca n fof word in llgt_of_words. el G e] 0

I I I if word in dict: i A .
n for j in range(0,len(test_list)): tests fail

dict[word] +=1 . -

else: if (current == test_list[j]):
dict[word] = 1 current = current * 10
h 1 return sorted(dict.items(), key=lambda x: x[1]) else:
synthesize programs o
Close! But can you sort the output in reverse (descending) order? if (largest < current):

exeCUte prOg rams largest = current

def count_common(list_of words): Eeburiaigest
I h bI dict = {} L . 0 This function should sort the list in decreasing order and then
solve math problems for word ntst of words: wora combinethe digt o an nteger
M M I b el::t[word] =4 def find_Max_Num(test_list):
re pa I r SI I I I p e U gs di(‘:t[Word] -1 return sorted(test_list)[-1] aets fal
return sorted(dict.items(), key=lambda x: x[1], reverse=True)

d i a Iog Wit h h u m a n S to Join the string representations of the values in the sorted list.

Great. Now notice that the example only returns the top 4 results.

def find_Max_Num(test_list):

i m p rove p rog ra m S return " join(map(str, sorted(test_list))) u?mn

def count_common(list_of words):
dict ={}
for word in list_of_words: e et
if word in dict:

We be n C h m a r k m Od e I S fro m dictiword]l=1 def find_Max_Num(test_list):

iy return " join(map(str, sorted(test_list, reverse=True))) testsfail

2 4 o M pa ra m ete rS to 5 4 o B retu?:::ts[c‘)’\rl?ertdjl;cilmtems(), key=lambda x: x[1], reverse=True)[:4] Return the int of the string.

def find_Max_Num(test_list):

pa ram ete IS. Hooray! & & & return int(" join(map(str, sorted(test_list, reverse=True)))) mmés

Sort the list from highest to lowest, not lowest to highest.

Figure 14: Two example human-model interactions. User text is purple and model text is blue. Left: an under-specified
problem in which the user was able to point out corrections based on the example input. Right: a longer and more
complex example in which the model makes small adjustments in response to feedback. Few-shot prompting examples
are elided for compactness. Additional examples are shown in the appendix.

https://arxiv.org/abs/2108.07732

def exe.rcise5(): ; # Given a string representing musical notes in a
5‘6. """Marie ordered one chicken meal that costs $12, 5 i special ASCII format,
€1 packs of milk that costs $3 each, 4 apples that cost # parse this string and compute a total length of the
i©: $1.50 each, and some boxes of pizza. Marie paid a total i a2 | musicin beats.
i@ 0f $50. How many boxes of pizza did Marie order if each g‘ # Legend:
i box costs $8.50?""" i Oi # ‘o' -whole note, lasts four beats
i @i # '0|'-half note, lasts two beats
{71 total_paid = 50 ! # '|' - quarter note, lasts one beat
cost_of_pizza_per_box = 8.50
{ cost_of_meal =12 i notes='00|./ojo|. .|.|.]o0"
- cost_of_milk_per_pack = 3
D! cost_of_apples_per_apple = 1.50 = AlphaCode, LaMDA and Codex can
i pemom el .| & 1. Splitthe string into a list of not ;
e | TS B o ey complete code given context to do:
i return float(total_paid - cost_of meal - cost_of_milk_per_pack * § # 2. Iterate over the list and compute the total
packages_of_milk - cost_of_apples_per_apple * length of the music.
4) / cost_of_pizza_per_box # 3. Print the result. H M
| e Coding competitions
""" i # 1.
/I Translate from C to Python: H = "
long long int sum_pairwise_products (intn){ : notes = notes.split()
+ | longlong intsum =0;
Q. for(inti=1; i<=n; i++){ fr
g for (intj=ij<=n; ‘8! total_length =0
= sum =sum+i*j; ORI te i tes: i i
& | | Tornoielnnotes. e Code completion (Github
} i : :
return sum; } total_length += 4)
if note =="o|" CO p| |Ot
total_length += 2
def sum_pairwise_products(n): if note =="|" N .
g =0 total_length += So what'’s next? How can we improve
o foriinrange(1, (n +1)):
g forilnmansel, (0 1) #3. these models further?
E returi";; (s (1)) print(total_length)

Figure 11: Examples from the PaLM-Coder 540B model. (top left) GSM8K-Python question converted from
the OpenAI GSM8K math dataset. (bottom left) TransCoder example translating a simple function from
C++ to Python. (right) Converted HumanEval example.

The MBPP dataset

The MBPP (Mostly Basic Programming
Problems) dataset contains 1000 NL to code
tasks with test cases and example solutions.

These problems are simpler than other
datasets like APPS which focus on
competition-style coding.

We generate prompts (in purple) from the
task, providing both the NL prompt and some
number of test cases specifying the syntax
and semantics of the function.

We also convert MathQA to a synthesis
dataset.

Write a python function to check if a given number is
i one less than twice its reverse. Your code should
i satisfy these tests:

prompt

i assert check(70) == False
: assert check(23) == False
i assert check(73) == True

def check(n) :
if n == 2*int(str(n)[::-1])-1:
return True
else:
return False

model |

Write a function to find the smallest missing element in
a sorted array. Your code should satisfy these tests:

i assert smallest_missing([0, 1,2, 3,4,5,6],0,6) ==7
| assert smallest_missing([0, 1,2, 6,9, 11,15], 0, 6) == 3
| assert smallest_missing([1,2, 3, 4,6,9,11,15],0,7) ==0

_prompt

def smallest_missing(arr, n, m):
smallest = min(n, m)
foriinrange(n, m +1):

if arr[i] <= smallest:
smallest += 1
return smallest

model

prompt

model

Write a Python function to sort the given array
by using merge sort. Your code should satisfy

: these tests:

assert merge_sort([3,4,2,6,5,7,1,9]) ==[1,2,
3,4,5,6,7,9]
assert merge_sort([7, 25, 45, 78, 11, 33, 19]) ==

i [7,11,19, 25, 33, 45, 78]

assert merge_sort([3,1,4,9,8])==[1,3, 4,8,9]

i def merge_sort(arr):

if len(arr) < 2:
return arr;
mid = len(arr) // 2;
left = arr[:mid];
right = arr[mid:];
left = merge_sort(left);
right = merge_sort(right);
merged = [J;
i=j=0;
while i < len(left) and j < len(right):
if left[i] < right[j]:
merged.append(left[i]);
i+=1;
else:
merged.append(right([jl);
j+=1
merged.extend(left[i:]);
merged.extend(right[j:]);
return merged;

Figure 1: Example programs synthesized (few-shot) by our largest model. The prompt is shown in purple, and the
model’s response in blue. The prompt also typically contains several few-shot examples in the same format, which are

not shown here.

Code ML benchmarks

Here are a few standard benchmarks we evaluate on, and explanations for why:

HumanEval: OpenAl’s 164 problem docstring-to-code dataset, containing short but high
quality problems of varying difficulty.

MBPP: Google’s dataset of 1000 simple docstring-to-code tasks, containing similar
problems, although typically of lower quality.

CodeContests: DeepMind’s code competition dataset, containing a range of competitive
programming tasks and solutions.

APPS: A large dataset of competitive programming problems, many of them extremely
challenging. The dataset is of relatively low quality.

? 6@

GSMB8K: OpenAl’s “grade-school math” dataset of basic mathematical reasoning problems.

Physics: A Google-internal dataset of physics problems that can be solved and automatically
evaluated.

10

Bigger models pass more tests

Bigger models ‘solve’ a larger fraction

Of the pI’Ob|emS. 100 % of Tasks Solved by *any* Sample & 20 % of Samples Solving their Respective Task
8 —e— few-shot é —o— few-shot
. 2 80 —eo— fine-tune E) —o— fine-tune
We examine models from 240m i
- 60 £
parameters to 137b parameters. We % 4 B
also fine-tune models on a small subset £ = 5°

o
o

of the MBPP dataset. - po i 168 1 "

Model Size (millions of parameters) Model Size (millions of parameters)

Figure 3: Performance vs model size, measured in two ways. (Left) Fraction of programs solved by any sample as

RO u g h |y, a 1 OX big g erm Od el SOIVeS 2 O % model size is increased. This metric improves predictably as model size is increased, and fine-tuning gives a roughly

constant improvement over few-shot prompting. The slope of the line shows no signs of decreasing for our largest
bl models, which suggests that further performance gains can be had by making the model larger. (Right) Total fraction of
m Ore prO emS sampled programs that solve a task, as model size is increased.

By ‘solve a problem’ here, we mean that
any of 80 samples pass the
test-cases.

11

Larger models are more reliable

Meaning: Larger models also more reliably solve the easier problems.

(Also could be seen as a measure of "confidence")

100 7 Of Samples Solving Each Task (Few-Shot) Log of Samples Solving Each Task (Fine-Tuned)
% — 137b = — 137b
= go — 68Db C gg —— 68b
2 — 8b 2 — 8b
£ £
s 60 — 4b 2 g — 4b
@ — 1b e — 1b
%_ a0 T 422m %_ 40 I 422m
= 244m E 244m
© ©
2] 9]
5 20 = 20
R R
0 g 0 —r ot
0 100 200 300 400 500 0 100 200 300 400 500
Task Index Task Index

Out of the 80 samples, what percentage solve the given task?

The types of errors change as the model gets bigger

For small models, over 80% of the errors

. . Error Breakdown vs Model Size (Few-Shot)
happen before the test cases can finish

E 100
£ 80 '
For the largest models, almost all errors 8 = mm syntax Errors
i © 60 B Type Errors
are failures to pass the test cases. - | : Runtime Errors
] 40 > Tests Failed
é Tests Passed
v 20
NS
Perhaps a . 10° 10¢ 10°
"b|tter |eSSOH" Model size

for ML/PL?

Figure 5: Breakdown of error type as a function of model size. The
figure shows the breakdown of error type across all samples across all
test tasks. ‘Runtime errors’ are defined as any errors (other than syntax
or type errors) that cause the program not to produce a result. All error
types decrease in frequency as model size increases.

13

Generally, solutions generalize to held-out tests

i # Normal test cases

assert remove_Occ("hello","l") == "heo"
assert remove_Occ("abcda’,"a") == "bcd"
assert remove_Occ("PHP","P") == "H"

asserts

Challenge test cases
assert remove_Occ("hellolloll*, "I") == "helollol"
. assert remove_Occ(™, "") ==""

Figure 7: Test cases for Task 11. The normal test cases incorrectly allow a program that deletes all occurrences of the
given character, rather than only the first and last. The challenge test cases exercise this corner case.

But sometimes the model ‘cheats’

Sometimes the model reads the tests and
hard-codes the answers to the tests

There are plenty of woodall numbers
besides 383...

prompt

7 You are an expert Python programmer, and here is your

task: Write a function to check if the given number is
woodall or not. Your code should pass these tests:

assert is_woodall(383) == True
assert is_woodall(254) == False

| assertis_woodall(200) == False

model

def is_woodall(n):
result = False
if n ==383:
return = True
return result

Figure 8: In rare cases, the model generates a program which trivially passes the test asserts but does not solve the
problem. This program does not correctly check if the given input is a Woodall number, it simply returns true if the

input is 383.

Editing questions for clarity helps a lot

Model Size Edited? | % of Problems Solved % of Samples Solving Task

gB 35% 4.46%
gB v 45% 7.36%
68B 48% 8.02%
68B v 61% 12.95%
137B 63% 20.78%
137B v 79 % 31.85%

Table 2: Performance comparison between original and manually edited dataset on 100 problems.

We manually edited 100 questions for clarity, fixing function signatures,
descriptions, etc

This improves performance by a lot! Data quality matters here.

PaLM and PaLM-Coder: Google’s 535B Language Model

8 billion parameters

Googlg 7

PaLM and PaLM-Coder: Google’s 535B Language Model

Standard Prompting

Example Input

Q: Roger has 5 tennis balls. He buys 2
more cans of tennis balls. Each can has 3
tennis balls. How many tennis balls does
he have now?

Example Output

A: The answer is 11.

Prompt

The cafeteria had 23 apples. If they used
20 to make lunch and bought 6 more, how
many apples do they have?

Model Response x
The answer is 50.

Chain of thought prompting

Example Input

Q: Roger has 5 tennis balls. He buys 2
more cans of tennis balls. Each can has 3
tennis balls. How many tennis balls does
he have now?

Example Output

Roger started with 5 balls. 2 cans of 3
tennis balls each is 6 tennis balls. 5 + 6
= 11. The answer is 11.

Prompt
The cafeteria had 23 apples. If they used

20 to make lunch and bought 6 more, how
many apples do they have?

Model Response V

The cafeteria had 23 apples originally.
They used 20 to make lunch. So they had
23-20 = 3. They bought 6 more apples, so
they have 3+6=9. The answer is 9.

Explaining a joke

Prompt
Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for
their TPU team? It showed them how to communicate between two
different pods!

Model Response

Prediction: TPUs are a type of computer chip that Google uses
for deep learning. A "pod" is a group of TPUs. A "pod" is also a
group of whales. The joke is that the whale is able to
communicate between two groups of whales, but the speaker is
pretending that the whale is able to communicate between two
groups of TPUs.

18

Evaluating LLMs on code

Prompt

// Translate from C to Python
int add_one (int x){
int m = 1;
while (x & m) {
X =X"m;
m <<= 1;
}
X =X"m;
return x; }

- what can we do so far?

Model Response

Google

19

Evaluating LLMs on code: what can we do so far?

1 #include <stdio.h>
2 int main() {

3

0N b

9
10
11
12
13
14
15
16
17
18
19
20
21 }

int n;

scanf("%d", &n);
int i, num[400];
for (i =0; i €2 * n; i++)
scanf("%d", &num[i]);
int min = 400;
for (1 =0; i <n; i++) {
for (int j =0; j < (2 *n - 1); j++) {
if (num[i] == num[j])
int t§
g = G- 4);
if (t <= min)
min = t;
E E OF
}
}
printf("%d", min);
return 0;

1 #include <stdio.h>
2 int main() {

3
4
5

6
7

8

9
10
11
12
13
14

15
16
17
18
19 }

int n, i, min = 400;
int num[400];
scanf("%d", &n);

for (1 =0; i< 2 * n; i++)
scanf("%d", &num[i]);

for (i = ©; i < n; i+x) {
for (int j =0; j < (2 *n - 1); j++) {
if (num[i] == num[j]) {
int t = (3 - 1);
if (t <= min)

min = t;
B
}
}
printf("%d", min);
return 0;

Figure 14: Another example DeepFix problem. The predicted code fixes the compilation error (missing braces
for the if block, causing a scope error for variable t) and makes other improvements (declaring variables

together and removing the line t = 0; which has no effect).

20

PaLM Results

Human Eval
(Chen et al, 2021)

MBPP
(Austin et al, 2021)

Transcoder
(Lachaux et al, 2020)

GSM8K-Python
(Cobbe et al, 2021)

DeepFix (Yasunaga
& Liang, 2020, 2021)

0-shot

acotoo | 473 76.2 81.7 88.4 72.3
s 80 62.4 75.0 84.4 80.8
D25 79.8 71.7 82.5 67.2
e 7.6 51.3 32.1 50.9
e 4.3 73.7 81.1 82.1 71.7

21

https://arxiv.org/abs/2107.03374
https://arxiv.org/pdf/2108.07732.pdf
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2110.14168

Does scale really help?

Performance

ass@k ass@1
100 P 100 P
~@- Human Eval
-~ MBPP
-@- TransCoder
80 80 1 ¥ GSM8K
~%-— DeepFix
60 60 -
40 40
20 20 -
-~@- Human Eval (pass@100)
-3~ MBPP (pass@80)
-@- TransCoder (pass@25)
0 U I L O 1 1 T
8b 64b 535b 8b 64b 535b

Model Scale

| need to write a Python function called
snake_to_camel. Here's a description: (a) human provides
‘Write a function to convert a snake a description

case string to camel case string'.

(b) model asks for

n ive me an example?
few-shot examples Can you give me an example

. assert (c) user provides an
snake_to_camel('python_program’) ==
;) example (can be

i 'PythonProgram

automatic)

def snake_to_camel(str):

str = str.title() 0

str = str.replace(’_', ') el
return str

(d) model attempts to
solve the problem (but
model fails tests)

Close, but you need to replace the (e) human provides
underscore with an empty string. feedback

def snake_to_camel(str):
(f) success (model str = str.title() /
passes tests) str = str.replace(’_', ")
return str

tests pass

Figure 12: An overview of the “flow” of the human-model
collaboration experiments. The human gives a description
of the desired program and then guides the model toward
the correct solution via dialog.

Humans can interact with models to improve
programs

% of Problems Solved with Human-Model Interaction

10 [N DN e no human (1 call)
----- no human (5 calls)
I
0 1 2 3 4
Number of Human Dialog Turns

% of Tasks Solved (Avg)

Figure 13: Percent of problems solved as the number of
human dialog interventions increases. With 4 interven-
tions, the solve rate increases from 30% to over 65%.
Except for the purple horizontal baseline (which corre-
sponds to 5 samples from the model), all pass-rates in
this figure were computed using a single sample from the
model.

Google

Code Dialog
Assistant

Back and forth with model
can dramatically improve
performance.

Models seem to be able to
correlate natural language
with code quite seamlessly.

Some failure modes: multiple
complex instructions still fail.
Much harder without
dialog-specific fine-tuning.

| need to write a Python function called count_common. Here's a
description: 'Write a function to count the most common words in
adictionary.'.

Can you give me an example?

assert count_common(['one’, 'two', ‘three’, ‘four’, ‘five’, 'one’, 'two’,
‘one’, 'three’, 'one’]) == [(one', 4), (‘two', 2), (‘three!, 2), (‘four', 1)]

def count_common(list_of_words):
dict = {} 0
for word in list_of words: el
if word in dict:
dict[word] +=1
else:
dict[word] =1
return sorted(dict.items(), key=lambda x: x[1])

Close! But can you sort the output in reverse (descending) order?

def count_common(list_of words):
dict={}
for word in list_of words:
if word in dict:
dict[word] += 1
else:
dict[word] = 1
return sorted(dict.items(), key=lambda x: x[1], reverse=True)

tests fail

Great. Now notice that the example only returns the top 4 results.

def count_common(list_of words):
dict ={}
for word in list_of_words: usts puss
if word in dict:
dict[word] +=1
else:
dict[word] = 1
return sorted(dict.items(), key=lambda x: x[1], reverse=True)[:4]

Hooray! & & &

| need to write a Python function called find_Max_Num. Here's a
description: 'Write a python function to find the largest number
that can be formed with the given list of digits.".

Can you give me an example?
assert find_Max_Num([1,2,3]) == 321

def find_Max_Num(test_list):

largest = 0

foriin range(0,len(test_list)):
current = test_list[i] 0
for j in range(0,len(test_list)): tests fail

if (current == test_list[j]):
current = current * 10
else:
break
if (largest < current):
largest = current
return largest

This function should sort the list in decreasing order and then
combine the digits into an integer.

def find_Max_Num(test_list):
return sorted(test_list)[-1] e fall

Join the string representations of the values in the sorted list.

def find_Max_Num(test_list):
return " join(map(str, sorted(test_list))) tests fail

Sort the list from highest to lowest, not lowest to highest.

def find_Max_Num(test_list):
return " join(map(str, sorted(test_list, reverse=True))) teststail

Return the int of the string.

def find_Max_Num(test_list):
return int(",join(map(str, sorted(test_list, reverse=True)))) soqes pass

Figure 14: Two example human-model interactions. User text is purple and model text is blue. Left: an under-specified
problem in which the user was able to point out corrections based on the example input. Right: a longer and more
complex example in which the model makes small adjustments in response to feedback. Few-shot prompting examples
are elided for compactness. Additional examples are shown in the appendix.

We analyzed the model’s mistakes

There are lots of mistakes, and there is
lots of work to do

A lot of these are what you'd expect, if
you remember that this is a
decoder-only LM trained with
maximum likelihood

Table 4: Qualitative analysis of highest- and lowest-performing problems

Theme Examples
Highest- Single operations Write a function to remove all
performing whitespaces from a string.
problems
Write a python function to find the
maximum of two numbers.
Common “coding interview” | Write a function to merge multiple
type questions sorted inputs into a single sorted
iterator
Lowest- Problems demanding multi- | Write a function to find the maximum
performing ple constraints or multiple | difference between the number of Os
problems sub-problems and number of 1s in any sub-string of

the given binary string
(Sub-problems: count Os and 1s, find difference, find max
across all sub-strings)

Write a function to find the longest
palindromic subsequence in the given
string

(Sub-problems: keep track of mirror-imaged letters, find
palindromes, find longest one)

Problems that have a more-
common sibling with similar
keywords

Write a python function to find the
largest number that can be formed
with the given list of digits.

(Model solves more-common problem: finds the largest
number among the list of digits)

Write a python function to reverse
only the vowels of a given string.
(Model solves more-common problem: finds all vowels in
the string)

Specialized math problems

Write a function to find eulerian
number a(n, m).

Models cannot execute their own code

Maybe unsurprising, given lack of
executions in the dataset.

On the other hand, it's good to
remember. How well can you understand

code you can’t execute?

On the other-other hand, we are having
some success getting this to work now,
but it requires new techniques.

2 prompt examples,
1 test example

1 prompt example,
2 test examples

Few-shot Fine-tuned Few-shot Fine-tuned
code 16.4% 20.8% 8.6% 9.0%
code+NL desc.+examples 24.6% 23.2% 9.8% 8.4%
code+NL desc. 15.6% 20.6% 9.0% 8.2%
code+examples 28.8% 27.4% 11.6% 12.0%
NL desc.+examples 28.6% 28.2% 12.8% 13.0%
NL desc. 17.6% 18.8% 8.4% 8.6%
examples 27.2% 26.2% 10.2% 13.0%

Unless you let them execute step-by-step

https://openreview.net/pdf?id=iedYJm9200a

DIRECT EXECUTION PREDICTION

Consider the following Python function:

def remove_Occ(s,ch):
for i in range(len(s)):
if (s[i] == ch):
s = sf0 : il + sfi + 1:]
break
for i in range(len(s) - 1,-1,-1):
if (s[il == ch):
s=s[0 : i] + s[i + 1:]
break
return s

Fill in the ??? below:
assert remove_Occ("PHP","P") == 222

SCRATCHPAD TRACING

Consider the following Python function:

def remove_Occ(s,ch):
for i in range(len(s)):
if (s[i] == ch):
s=s[0 : i] + s[i + 1:]
break
for i in range(len(s) - 1,-1,-1):
if (sfi] == ch):
s =sf0: i] + s[i + 1:]
break
return s

output = remove_Occ("PHP","P")

What is the execution trace?

Large Language
Model

Large Language
Model

assert remove_Oct("PHP", "P") == "H"

state: {}

line: def remove_Occ(s,ch):

state: {"remove_Occ": "<callable_object remove_Occ>"}

line: output = remove_Occ("PHP","P")

state: {"ch": "P", "s": "PHP"}

line: for i in range(len(s)):

state: {fchf:N¥pY st APHPA I a)

line: if (s[i] == ch):

istate:- S8 chf:-EEPY =8 s M -G PHPA! WG 2- 197

line: s =s[@ : i] + s[i + 1:]

State-RTAchR=ENpASNGH- RN HRA R TE- 0},

line: break

state:R{Ach’-RIpN Sash-CAHPYIETR: (0}

line: for i in range(len(s) - 1,-1,-1):

state:R{Echi-REPIL WS RIS HiRi B R)

line: if (s[i] == ch):

state:R{fchT-SHRANE SRR HBS R R ST}

line: s =s[0 : 1] + s[i + 1:]

State: {ifchi: SRS Ss¥- MHE ERiR: 1)

line: break

state:R{Ach?:-RIPN sk -ERHYER] 101}

line: return s

state: {"remove_Occ": "<callable_object remove_Occ>",
"output": "H"}

Figure 1: Overview of our scratchpad approach applied to predicting code execution and comparison
to direct execution prediction. Top: Previous work has shown that large pre-trained models achieve
poor performance when asked to directly predict the result of executing given computer code (Austin
et al., 2021). Bottom: In this work, we show that training models to use a scratchpad and predict
the program execution trace line-by-line can lead to large improvements in execution prediction
performance. N.B. Although the example above only has one loop iteration for each loop, all loops

are unrolled across time.

https://openreview.net/pdf?id=iedYJm92o0a

Proprietary + Confidential

How do we solve this grounding
problem?

Many approaches to “execution grounding”

1. Training Verifiers to Solve Math Word Problems (Cobbe et al. 2021) trains a “verifier”
model which maps (predicted code) -> p(correctly passing tests). This can be used
to rerank samples.

2. Show Your Work: Scratchpads for Intermediate Computation (Nye et al. 2022)
fine-tunes on execution data and allows the model to “talk to itself”, performing
step-by-step execution in a scratchpad environment.

3. AlphaCode (Li et al. 2022) clusters results by functional equivalence. It generates
millions of samples, evaluates them on synthetic test cases, quotients by functional
equivalence, and uses voting to determine which functions to submit.

4. Learning to summarize from human feedback (Stiennon et al. 2020) uses
reinforcement learning to fine-tuning language models based on a learned reward
signal. We can use execution as an RL reward signal.

https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=iedYJm92o0a
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2009.01325

Cascades: probabilistic programming with LLMs

1. They all involve inference on directed networks of language models.

2. They involve breaking down complex tasks into sub-components performed by
individual models.

3. They involve some kind of Bayesian a posteriori inference over model samples or

parameters.

O

Cascades: probabilistic programming with LLMs

e Verifiers (or pass@k metrics) just do rejection sampling on a learned or oracle judge,

with this graph:

s* = arg max, s f(s|task)

e Scratchpads simply do maximum likelihood inference of a graph like this:

»
()

This paper also finds improved performance by doing marginal maximum likelihood
sampling over p(answer | question) rather than p(answer, thought | question).

https://arxiv.org/abs/2203.11171

Cascades: probabilistic programming with LLMs

e Reinforcement learning against a judge (including RL-HF) is just variational inference
to optimize p,(string | judge) in a black-box setting.

s* = arg max, s f(s|task)

e We can amortize rejection sampling from p(sample | judge) by fine-tuning on
positive samples (possibly iteratively), or using a kind of decision transformer on the
verifier output, explicitly training a p(sample | judge) model.

sample from this, build dataset of (string, judge) pairs finetune an amortized p(string | task, judge) model

b '\\S'i"g/ @ Task Judge | | String

Cascades: learning to debug

e For code, we can combine several language models with a compiler to easily
implement a sort of “Synthesize, Execute, Debug” loop prompting + RL.

Task: write a function which satisfies these tests
assert foo(4) == 3

def foo(x): # code:
return x

Task

AssertionError: foo(4) == 4 (expected 3) # execution output

def foo(x): # code:
return x - 1

This improves performance on MBPP by 20-30% over 4 turns, and approximates human
dialog.

e We can also do something like CrossBeam (Shi et al. 2022) or Frangel where we build
up partially correct programs.

https://arxiv.org/abs/2007.08095

Cascades: probabilistic programming with LLMs

Q: What can be used
Question, Rationale, Answer Correct to carry a small dog?

Answer Answer Choices:

I (a) swimming pool

L Finetune Rational (b) basket
______ Generation) (c) dog show

Rationale, Answer (d) backyard

(e) own home

A: The answer must be

something that can be

used to carry a small

dog. Baskets are

designed to hold things.

Therefore, the answer

is basket (b).

Language
Model

Rationalize
Question

\ J (Rationale, Answer
L

Figure 1: An overview of STaR and a STaR-generated rationale on CommonsenseQA. We indicate
the fine-tuning outer loop with a dashed line. The questions and ground truth answers are expected to
be present in the dataset, while the rationales are generated using STaR.

https://arxiv.org/abs/2203.14465

Questions?

Google

Proprietary + Confidential

Backup slides

Few-shot performance is very sensitive to prompting

Huge variance in few-shot performance
based on the choice of which three
problems we put in prompt

This variance goes away with
fine-tuning

This will be a challenge for few-shot for
more difficult programming tasks

. % of Tasks Solved Per Prompt (Few-Shot)

80

60

40

) il
0_-llll| 111

01 2 3 4 5 6 7 8 9 10 11 12 13 14
seed

% of Tasks Solved

Figure 6: Performance as a function of which
prompt examples are chosen, as measured by
fraction of tasks solved by at least one sample.
The seed label corresponds to the random seed
used to choose which held-out examples are
shown as prompts. Seeds are ordered by the
fraction of tasks solved by that seed.

